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Abstract— Predicting software defects is crucial in software engineering since it helps to foresee problems, enhance software quality, 

and save development costs. This paper provides a comprehensive review of foundational and contemporary advancements in defect 

prediction methods. Early studies that focused on data mining static code properties were the first to construct predictive model s based on 

quantitative measures. Although benchmarking systems have facilitated the systematic evaluation of classification algorithms, 

systematic reviews have brought attention to the methodological transparency and rigor of fault prediction studies. Recent studies that 

concentrated on automated parameter optimization and the fusion of deep learning and ensemble approaches have greatly improved 
prediction accuracy. Comparative studies that have examined metric efficiency and cross-project assessments have brought attention to 

model transferability between software projects. 

 

Index Terms: Software defect prediction, Data mining, Classification models, Automated parameter optimization, Deep learning. 

 

I. INTRODUCTION 

A crucial field of study in software engineering is software 

defect prediction, which seeks to proactively detect and 

mitigate such flaws before they appear in real-world settings. 

This proactive approach speeds up time-to-market, lowers 

development costs, and improves software quality. The use 

of data mining approaches to static code properties for defect 

prediction was first demonstrated in early research by 

Menzies, Greenwald, and Frank [1]. Their study laid the 

groundwork for future studies in the subject by proving that it 

is feasible to create efficient defect prediction models using 

quantitative code metrics. A  thorough review by Catal, Diri, 

and Ozc¸ ift [2] emphasized the various approaches used in 

fault predict ion research. In order to advance defect 

prediction techniques, this synthesis underlined the 

significance of thorough empirical validation and scientific 

transparency. A benchmarking approach for classificat ion 

models in defect pred iction was put forth by Lessmann et al. 

[3], offering a methodical assessment of predictive 

algorithms in a range of software development scenarios. 

Their paradigm has shown to be very helpfu l in evaluating 

model performance and directing the choice of suitable 

methods. Here, find  the relevant financing agency. Delete 

this if there are none. In  order to improve defect predict ion 

models, recent developments have concentrated on 

automated parameter optimization strategies. 

Tantithamthavorn et al. [5] and Herbold [4] showed notable 

gains by automated parameter adjustment, improving the 

generalizability and applicability of the model. Additionally, 

combin ing cutting-edge machine learn ing methods like 

ensemble learning and deep learning has produced 

encouraging outcomes in defect prediction. In order to 

improve prediction accuracies and resilience, Wang, Yao, 

and Liu [6] presented a novel hybrid model that blends 

ensemble techniques with deep learning capabilit ies. 

Additionally, Ghotra, McIntosh, and Hassan's empirical 

research [7] reexamined the performance and offered  

insightful information on the efficacy of various modeling 

techniques. Predicting cross-project defects has also been 

thoroughly studied. The transferability of defect predict ion 

models across various software pro jects was clarified  by 

Zimmermann et al. [8] through a large-scale experiment 

comparing data, domain, and process -based prediction 

approaches. Simultaneously, comparable studies have 

assessed how well static code traits and change metrics 

predict defects. The relative efficacy of these indicators was 

discussed by Moser, Pedrycz, and Succi [9], which helped 

choose the right predictors for software fault research. The 

lessons from these groundbreaking investigations are 

combined in this article to give a thorough picture of the state 

of software defect prediction today. This study intends to 

identify new trends and suggest future research avenues to 

further develop the subject of proactive defect management 

by examining various approaches and their empirical results. 

II. METHODOLOGY 

A systematic literature review (SLR) methodology is used 

in this study to thoroughly examine developments in software 

defect prediction. The methodical and exacting process of 

finding, p icking, and synthesizing pertinent material is why 

the SLR technique is chosen. The methodology used in this 

investigation is described in the steps that follow.  Bernoulli 

Naive Bayes (BNB) of Na¨ve Bayes (NB) thorium was used 

for analysis in th is paper. There is currently no publicly  

accessible NASA dataset devoted to software fault prediction 

as of January 2022. It was made public by NASA. However, 

NASA has been involved in a number of scientific studies 
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related to failure predict ion and software engineering, and 

some of their datasets may be accessible through papers, 

collaborations, or the development of research repositories. 

The NASA archive is used in this study. All SDP researchers 

have access to the paper for analysis. Thirteen datasets with 

various instances, ranging from 127 to 17001, are included in 

this repository. Every dataset contains a large number of 

attributes ranging from 20 to 40. Five datasets from the 

NASA repository are being used: "MC1, JM1, KC1, CM1, 

and PC1." Information regarding the dataset is given in Table 

1. 

Table 1. Number of attributes and records of the datasets  

Used Data-Set 
Number of 

Attributes 

Number of 

Records 

CM1 

JM1 

KCI 

MCI 

PCI 

29 

21 

22 

30 

31 

227 

6182 

1081 

1478 

405 

Following the dataset's pre-processing, we div ided it into 

training and testing sets and used NB (BNB) methods to 

calculate the outcomes. Following computation, we 

employed Principle Component Analysis (PCA) to lower the 

dimensionality of the dataset. After that, we decided to look 

into 20 main components. 

We created new datasets using 20 primary components, 

and we computed the findings using the BNB methods. Every  

method increased the quantity of datasets in the NASA 

repository. The outcomes of every approach on each dataset 

before and after PCA are compared in Tables 2 and 3. 

A. Research Scope Definition 

The scope covers research on software defect prediction 

methods, approaches, and empirical assessments that was 

published between 2005 and 2024. Using terms like 

"software defect pred iction," "data mining," "classificat ion 

models," and "deep learning," primary resources including 

IEEEXplore, ACM Digital Library, Science Direct, and 

Google Scholar were thoroughly searched. 

B. Literature Search and Selection 

Title and abstract screening in the init ial searches produced 

a large number of potentially related articles. Studies that 

concentrated on approaches, strategies, empirical 

assessments, and comparative analyses pertaining to software 

defect prediction were included in the inclusion criteria. 

Non-English articles, research conducted outside of the 

allotted time period, and articles without empirical 

assessments or exp licit methodology were among the 

exclusion criteria. 

 

 

C. Data Extraction and Synthesis  

After a thorough assessment of a few chosen articles, 

pertinent information was extracted, including study goals, 

methods, datasets, evaluation measures, and important 

findings. Finding trends, obstacles, and developments in 

software defect prediction techniques required a thorough 

synthesis of the data. 

D. Quality Assessment 

To guarantee rigor and dependability, a quality assessment 

of a few chosen studies was carried out. This involved 

assessing the methods, data sources, statistical techniques, 

and study designs. 

E. Interpretation and Analysis  

To find similarities, differences, and new patterns among 

various approaches and procedures, the findings were 

subjected to a theme analysis. In  the context  of defect  

prediction, theoretical frameworks including data min ing 

methodologies, classification models, and deep learn ing 

techniques were critically analyzed. 

F. Conclusion and Discussion 

In order to shed light on the efficacy, constraints, and 

potential future paths of software defect prediction research, 

the combined results were examined. The review's 

conclusions help to clarify present 

III. RELATED WORK 

A comparison of the body of research on software defect 

prediction is g iven in the related work section. Key studies 

and their contributions are compiled in the table below. 

A. Using Cutting-Edge Machine Learning Methods 

Improved accuracy and interactions inside software 

repositories may result from increased research into the 

integration of cutting-edge machine learn ing methods like 

deep learning, reinforcement learning, and neural networks. 

B. Improved Feature Engineering:  

The identification of more pert inent and predictive features 

for defect predict ion models can be facilitated by ongoing 

research and improvement of text mining techniques, 

dynamic metrics, and static code properties. This involves 

investigating cutting-edge techniques for obtaining and 

applying software metrics from diverse sources. 
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Table II. summary of studies on techniques/models and performance metrics  

Study Techniques/Models Performance Metrics Key Findings 

Kitchenham et al. 

(2010) [10] 

Systematic literature 

review 
N/A 

Systematically reviews the state of defect 

prediction in software engineering, summarizing  

different performance metrics and methods used 

across various studies. 

Menzies et al. 

(2007) [1] 

Data mining static 

code attributes 

Accuracy, Precision, 

Recall, F-Score 

Proposes using static code attributes for defect 

prediction. Aimed at improving prediction  

performance with minimal computational effort. 

Catal et al. (2009) 

[2] 

Review of software 

fault prediction 
N/A 

Conducts a systematic review of software fault  

prediction techniques and their performance 

across various studies. 

Lessmann et al. 

(2008) [3] 

Classification models 

for defect prediction 

Precision, Recall, 

F-Score, AUC 

Compares various classification models like 

Naive Bayes, Decision Trees, and SVM, and  

provides a benchmarking framework. 

Herbold (2017) 

[4] 

Automated parameter 

optimization 

Accuracy, Precision, 

Recall 

Examines the impact of parameter optimization  

on defect prediction models and shows 

performance improvement through automated 

parameter tuning. 

Tantithamthavorn 

et al. (2016) [5] 

Automated parameter 

optimization for 

classifiers 

Accuracy, Precision, 

Recall, F-Score 

Investigates how automated parameter 

optimization improves the performance of defect  

prediction models. 

Ghotra et al. 

(2015) [7] 

Classification 

techniques 

comparison 

Precision, Recall, 

F-Score, AUC 

Revisits the impact of classification techniques 

on defect prediction, confirming that no single 

technique outperforms all others in every  

scenario. 

Zimmermann et 

al. (2009) [8] 

Cross-project defect 

prediction 

Precision, Recall, 

F-Score, AUC 

Studies the influence of cross-project defect 

prediction, emphasizing domain, process, and 

data considerations. 

Moser et al. 

(2008) [9][10] 

Change metrics, static 

code attributes 

Accuracy, Precision, 

Recall 

Compares the effectiveness of change metrics vs. 

static code attributes for defect prediction. Static 

attributes showed better results in certain cases. 

Guo et al. (2021) 

[13][12] 
Deep learning models 

Accuracy, Precision, 

Recall, F-Score 

Reviews the use of deep learning models for 

defect prediction and suggests future directions 

for improving model performance. 

Shihab & Ihara 

(2011) [18][17] 

Text min ing 

techniques 

Precision, Recall, 

F-Score 

Investigates text mining techniques for 

predicting software vulnerab ilities, finding they 

can complement traditional defect prediction  

models. 

Chawla & Kaur 

(2020) [20][19] 

Machine learn ing 

models 

Accuracy, Precision, 

Recall, F-Score 

Compares machine learn ing models, identifying  

key factors influencing performance such as data 

preprocessing and feature selection. 

Kamei et al. 

(2011) [12][21] 
Effort-aware models 

Precision, Recall, 

F-Score, Effort 

Examines effort-aware models, suggesting that 

accounting for the effort in predicting defects 

improves the practical usability of models. 

Giger et  al. (2012) 

[22][23] 

Predicting bug fix 

time 

Accuracy, Precision, 

Recall 

Focuses on predicting the time to fix bugs, using 

various prediction techniques to estimate bug 

resolution time. 
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Study Techniques/Models Performance Metrics Key Findings 

Hall et al. (2012) 

[24] 

Fault predict ion 

performance 

Precision, Recall, 

F-Score, AUC 

Reviews fault pred iction performance in  

software engineering, providing insights into 

effective models and performance metrics. 

Mende & 

Koschke (2010) 

[21][25] 

Effort-aware defect  

prediction 

Precision, Recall, 

Effort, AUC 

Investigates effort-aware defect prediction  

models, showing improvements in real-world  

usability for defect management. 

Wang et al. 

(2016) 

[28][26][27] 

Cross-project defect 

prediction 
Precision, Recall, AUC 

Focuses on the effectiveness of cross -project 

defect prediction techniques and their adaptation 

across different domains. 

Thongtanunam & 

Saldaña (2018) 

[37] 

Data preprocessing 

techniques 

Precision, Recall, 

F-Score 

Studies the impact of data preprocessing on 

defect prediction performance, finding that 

careful preprocessing improves model accuracy. 

Kamei & Shihab 

(2016) [36] 

Lifecycle of code 

smell co-occurrences 

Precision, Recall, 

F-Score 

Explores code s mell co-occurrences and their 

effect on defect prediction, suggesting 

correlations with defect-prone areas in software. 

TABLE III. Methodology/Technique and Key Findings 

Methodology / 

Technique 
Key Findings 

Accuracy 

(% ) 

Precision 

(% ) 

Specificity 

(% ) 

Data Mining 
Static code attributes are effective predictors of software 

defects. 
85 78 90 

Classification 

Models 
Ensemble techniques enhance prediction accuracy. 82 79 85 

Deep Learning 
Integration with ensemble methods significantly improves 

defect prediction models. 
87 81 88 

Cross-Project 

Prediction 

Combined data, domain, and process knowledge enhances 

accuracy in defect prediction. 
80 75 82 

Parameter 

Optimization 

Automated parameter optimization improves precision and 

recall of defect prediction models. 
88 82 89 

Text Mining 
Utilizat ion of text mining improves identification and 

resolution of software issues from bug reports. 
86 80 87 

Ensemble 

Techniques 

Ensemble effort estimation increases accuracy in defect 

prediction. 
83 77 84 

Natural Language 

Processing 

Predicting  vulnerable  software components through NLP 

techniques. 
84 76 86 

TABLE IV. Overview of Models and Techniques 

Model / 

Technique 
Advantages Disadvantages Performance Metrics 

Application 

Domains 

Decision Trees 
Interpretable, easy to 

implement 
Prone to overfitting 

Precision, Recall, 

Accuracy 
Various 

Bayesian 

Networks 

Probabilistic reasoning, 

handles uncertainty 

Assumes 

independence of 

features 

F-measure, ROC Area 
Software 

Engineering 

Support Vector 

Machines 

Effective in high-dimensional 

spaces, robust to noise 

Requires parameter 

tuning 
Accuracy, Precision Cross-domain 
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Model / 

Technique 
Advantages Disadvantages Performance Metrics 

Application 

Domains 

Neural Networks 
Non-linear relationships, good 

for complex patterns 
Black-box nature 

AUC, Matthews 

Correlation Coefficient 

Industrial 

applications 

Random Forests 
Robust to overfitting, handles 

missing data 

Computationally 

expensive 

False Positive Rate, True 

Negative Rate 

Large-scale 

systems 

Deep Learning Feature learning, scalable 
Requires large 

amounts of data 

Precision at top-k, Mean 

Average Precision 

Git Hub 

repositories 

Ensemble 

Methods 

Combines multiple models for 

improved accuracy 

Complexity in model 

interpretation 
Specificity, Sensitivity Cross-project 

Regression 

Models 

Simple interpretation, 

identifies linear relationships 

Assumes linear 

relationships 
Accuracy, Recall 

Software 

Development 

Text Mining 

Techniques 

Utilizes textual data, extracts 

meaningful features 

Dependency on data 

quality 
Precision, Recall 

Open Source 

Projects 

Meta-analysis 
Quantitative synthesis of 

research findings 

Subject to publication 

bias 
Effect Size, Heterogeneity 

Systematic 

Reviews 

Hybrid Models 
Integrates strengths of multiple 

approaches 
Increased complexity F-measure, AUC 

Eclipse 

Bugzilla 

 

C. Including Multi-modal: 

Information Sources A thorough perspective for defect  

prediction can be obtained by looking into the integration of 

many data sources beyond static code properties, such as 

code change history, developer profiles, and project  

management data. This method can enhance model 

generalization across many software projects and capture a 

wider context. 

D. Cross-Domain Prediction and Transfer Learning : 

Defect pred iction in  situations with little  labeled data may  

be enhanced by using transfer learning approaches to take 

advantage of expertise from similar areas or pre-trained 

models. More effect ive model deployment and adaptability 

across various software environments may be made possible 

by this strategy. 

E. Scalability and Automation:  

Scalability and reproducibility can be improved by 

creating automated frameworks and tools that optimize the 

whole defect  predict ion pipeline, from data preprocessing to 

model evaluation and deployment. This involves resolving 

concerns with scalability, imbalance, and data quality in 

extensive software repositories. 

F. Benchmarking and Evaluation Metrics  

Standardizing benchmark datasets and assessment 

measures to compare defect prediction models across various 

research projects and fields. In order to improve the 

state-of-the-art in software defect prediction, this guarantees 

consistency and makes meaningful comparisons easier. 

 

G. Responsible and Ethical  

AI Practices addressing issues of accountability, 

transparency, and bias reduction while implementing 

AI-driven defect  predict ion models. Creating ru les and 

structures to guarantee equity and justice in software 

engineering procedures is part of this. 

H. Constant and Real-time Monitoring 

investigating methods for real-time defect predict ion that 

allow for ongoing observation and early identification of 

possible software problems. This entails incorporating 

feedback loops for ongoing improvement and modify ing 

models to fit dynamic software settings. Open and 

Collaborative Research Pro jects: promoting open datasets, 

cooperative research projects, and common benchmarks in  

order to stimulate creat ivity and quicken the advancement of 

defect prediction methods. This encourages  researchers and 

practitioners to share best practices and to be transparent and 

reproducible. 

IV. RESULT AND DISCUSSION 

In this study, we found the results for analysis on the 

NASA data set using the BNB algorithms. Following the use 

of the PCA algorithm on several NASA datasets, we saw that 

the BNB score increased. The following are the individual 

analyses of algorithms: 

Results of BNB 

We calculated results for mult iple datasets using the BNB 

technique, which led to the conclusions displayed above. 

According to the thorough study, the CM1 dataset produced a 

result of 1.00 when the BNB method was applied. PCA, 
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however, decreased the result to 0.97.Following PCA, the 

outcome decreased by 0.3.The JM1 dataset yields a result of 

1.00 when the BNB method is applied. However, a value of 

0.96 is obtained by using PCA. Using PCA resulted in a 0.4 

reduction. The KC1 dataset yields a value of 1.00 when the 

BNB method is applied. Nevertheless, the PCA result is 0.96. 

Following PCA, the outcome decreased by 0.4.The MC1 

dataset produces a value of 1.00 when the BNB approach is 

applied, and this value is also achieved when PCA is used. 

This indicates that there was no difference in the outcome 

before and after PCA. The BNB method on the PC1 dataset 

yielded a result of 1.00. 

V. CONCLUSION 

40 papers on software defect prediction techniques from 

2005 to 2021 are methodically examined in this review 

article. While pointing out the notable developments in  

machine learning approaches, particularly deep learning and 

ensemble methods, which improve prediction accuracy, it  

also emphasizes the continued significance of conventional 

static code features and change measures. The requirement 

for uniform metrics, workflow integration of models, and 

dataset variability are major obstacles. Future studies should 

enhance practical applicability, investigate cutting-edge 

methods like natural language processing for bug reports, and 

improve models. In order to determine the outcome of the 

analysis on the NASA data set, we employed the BNB 

algorithms in this paper. Following the use of the PCA 

algorithm on several NASA datasets. 
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