
 ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 11, Issue 10, October 2024

90

Software Defect Prediction
[1] Shesh Kumar, [2] Sachin Kumar Sonker, [3] Bhanu Pratap Rai, [4] Lalit Kumar Tripathi,

[5] Ajai Kumar Maurya

[1] [2] [3] [4] [5] Department of Computer Science and Engineering,

United College of Engineering & Research (U.C.E.R) Prayagraj, Uttar Pradesh, India

Corresponding Author Email: [1] sheshkumar400@gmail.com, [2] sachinsonkar@united.ac.in, [3] bhanuprataprai@united.ac.in,
[4] lalittripathi11@gmail.com, [5] ajaikumarmaurya@gmail.com

Abstract— Predicting software defects is crucial in software engineering since it helps to foresee problems, enhance software quality,

and save development costs. This paper provides a comprehensive review of foundational and contemporary advancements in defect

prediction methods. Early studies that focused on data mining static code properties were the first to construct predictive model s based on

quantitative measures. Although benchmarking systems have facilitated the systematic evaluation of classification algorithms,

systematic reviews have brought attention to the methodological transparency and rigor of fault prediction studies. Recent studies that

concentrated on automated parameter optimization and the fusion of deep learning and ensemble approaches have greatly improved
prediction accuracy. Comparative studies that have examined metric efficiency and cross-project assessments have brought attention to

model transferability between software projects.

Index Terms: Software defect prediction, Data mining, Classification models, Automated parameter optimization, Deep learning.

I. INTRODUCTION

A crucial field of study in software engineering is software

defect prediction, which seeks to proactively detect and

mitigate such flaws before they appear in real-world settings.

This proactive approach speeds up time-to-market, lowers

development costs, and improves software quality. The use

of data mining approaches to static code properties for defect

prediction was first demonstrated in early research by

Menzies, Greenwald, and Frank [1]. Their study laid the

groundwork for future studies in the subject by proving that it

is feasible to create efficient defect prediction models using

quantitative code metrics. A thorough review by Catal, Diri,

and Ozc¸ ift [2] emphasized the various approaches used in

fault predict ion research. In order to advance defect

prediction techniques, this synthesis underlined the

significance of thorough empirical validation and scientific

transparency. A benchmarking approach for classificat ion

models in defect pred iction was put forth by Lessmann et al.

[3], offering a methodical assessment of predictive

algorithms in a range of software development scenarios.

Their paradigm has shown to be very helpfu l in evaluating

model performance and directing the choice of suitable

methods. Here, find the relevant financing agency. Delete

this if there are none. In order to improve defect predict ion

models, recent developments have concentrated on

automated parameter optimization strategies.

Tantithamthavorn et al. [5] and Herbold [4] showed notable

gains by automated parameter adjustment, improving the

generalizability and applicability of the model. Additionally,

combin ing cutting-edge machine learn ing methods like

ensemble learning and deep learning has produced

encouraging outcomes in defect prediction. In order to

improve prediction accuracies and resilience, Wang, Yao,

and Liu [6] presented a novel hybrid model that blends

ensemble techniques with deep learning capabilit ies.

Additionally, Ghotra, McIntosh, and Hassan's empirical

research [7] reexamined the performance and offered

insightful information on the efficacy of various modeling

techniques. Predicting cross-project defects has also been

thoroughly studied. The transferability of defect predict ion

models across various software pro jects was clarified by

Zimmermann et al. [8] through a large-scale experiment

comparing data, domain, and process -based prediction

approaches. Simultaneously, comparable studies have

assessed how well static code traits and change metrics

predict defects. The relative efficacy of these indicators was

discussed by Moser, Pedrycz, and Succi [9], which helped

choose the right predictors for software fault research. The

lessons from these groundbreaking investigations are

combined in this article to give a thorough picture of the state

of software defect prediction today. This study intends to

identify new trends and suggest future research avenues to

further develop the subject of proactive defect management

by examining various approaches and their empirical results.

II. METHODOLOGY

A systematic literature review (SLR) methodology is used

in this study to thoroughly examine developments in software

defect prediction. The methodical and exacting process of

finding, p icking, and synthesizing pertinent material is why

the SLR technique is chosen. The methodology used in this

investigation is described in the steps that follow. Bernoulli

Naive Bayes (BNB) of Na¨ve Bayes (NB) thorium was used

for analysis in th is paper. There is currently no publicly

accessible NASA dataset devoted to software fault prediction

as of January 2022. It was made public by NASA. However,

NASA has been involved in a number of scientific studies

 ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 11, Issue 10, October 2024

91

related to failure predict ion and software engineering, and

some of their datasets may be accessible through papers,

collaborations, or the development of research repositories.

The NASA archive is used in this study. All SDP researchers

have access to the paper for analysis. Thirteen datasets with

various instances, ranging from 127 to 17001, are included in

this repository. Every dataset contains a large number of

attributes ranging from 20 to 40. Five datasets from the

NASA repository are being used: "MC1, JM1, KC1, CM1,

and PC1." Information regarding the dataset is given in Table

1.

Table 1. Number of attributes and records of the datasets

Used Data-Set
Number of

Attributes

Number of

Records

CM1

JM1

KCI

MCI

PCI

29

21

22

30

31

227

6182

1081

1478

405

Following the dataset's pre-processing, we div ided it into

training and testing sets and used NB (BNB) methods to

calculate the outcomes. Following computation, we

employed Principle Component Analysis (PCA) to lower the

dimensionality of the dataset. After that, we decided to look

into 20 main components.

We created new datasets using 20 primary components,

and we computed the findings using the BNB methods. Every

method increased the quantity of datasets in the NASA

repository. The outcomes of every approach on each dataset

before and after PCA are compared in Tables 2 and 3.

A. Research Scope Definition

The scope covers research on software defect prediction

methods, approaches, and empirical assessments that was

published between 2005 and 2024. Using terms like

"software defect pred iction," "data mining," "classificat ion

models," and "deep learning," primary resources including

IEEEXplore, ACM Digital Library, Science Direct, and

Google Scholar were thoroughly searched.

B. Literature Search and Selection

Title and abstract screening in the init ial searches produced

a large number of potentially related articles. Studies that

concentrated on approaches, strategies, empirical

assessments, and comparative analyses pertaining to software

defect prediction were included in the inclusion criteria.

Non-English articles, research conducted outside of the

allotted time period, and articles without empirical

assessments or exp licit methodology were among the

exclusion criteria.

C. Data Extraction and Synthesis

After a thorough assessment of a few chosen articles,

pertinent information was extracted, including study goals,

methods, datasets, evaluation measures, and important

findings. Finding trends, obstacles, and developments in

software defect prediction techniques required a thorough

synthesis of the data.

D. Quality Assessment

To guarantee rigor and dependability, a quality assessment

of a few chosen studies was carried out. This involved

assessing the methods, data sources, statistical techniques,

and study designs.

E. Interpretation and Analysis

To find similarities, differences, and new patterns among

various approaches and procedures, the findings were

subjected to a theme analysis. In the context of defect

prediction, theoretical frameworks including data min ing

methodologies, classification models, and deep learn ing

techniques were critically analyzed.

F. Conclusion and Discussion

In order to shed light on the efficacy, constraints, and

potential future paths of software defect prediction research,

the combined results were examined. The review's

conclusions help to clarify present

III. RELATED WORK

A comparison of the body of research on software defect

prediction is g iven in the related work section. Key studies

and their contributions are compiled in the table below.

A. Using Cutting-Edge Machine Learning Methods

Improved accuracy and interactions inside software

repositories may result from increased research into the

integration of cutting-edge machine learn ing methods like

deep learning, reinforcement learning, and neural networks.

B. Improved Feature Engineering:

The identification of more pert inent and predictive features

for defect predict ion models can be facilitated by ongoing

research and improvement of text mining techniques,

dynamic metrics, and static code properties. This involves

investigating cutting-edge techniques for obtaining and

applying software metrics from diverse sources.

 ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 11, Issue 10, October 2024

92

Table II. summary of studies on techniques/models and performance metrics

Study Techniques/Models Performance Metrics Key Findings

Kitchenham et al.

(2010) [10]

Systematic literature

review
N/A

Systematically reviews the state of defect

prediction in software engineering, summarizing

different performance metrics and methods used

across various studies.

Menzies et al.

(2007) [1]

Data mining static

code attributes

Accuracy, Precision,

Recall, F-Score

Proposes using static code attributes for defect

prediction. Aimed at improving prediction

performance with minimal computational effort.

Catal et al. (2009)

[2]

Review of software

fault prediction
N/A

Conducts a systematic review of software fault

prediction techniques and their performance

across various studies.

Lessmann et al.

(2008) [3]

Classification models

for defect prediction

Precision, Recall,

F-Score, AUC

Compares various classification models like

Naive Bayes, Decision Trees, and SVM, and

provides a benchmarking framework.

Herbold (2017)

[4]

Automated parameter

optimization

Accuracy, Precision,

Recall

Examines the impact of parameter optimization

on defect prediction models and shows

performance improvement through automated

parameter tuning.

Tantithamthavorn

et al. (2016) [5]

Automated parameter

optimization for

classifiers

Accuracy, Precision,

Recall, F-Score

Investigates how automated parameter

optimization improves the performance of defect

prediction models.

Ghotra et al.

(2015) [7]

Classification

techniques

comparison

Precision, Recall,

F-Score, AUC

Revisits the impact of classification techniques

on defect prediction, confirming that no single

technique outperforms all others in every

scenario.

Zimmermann et

al. (2009) [8]

Cross-project defect

prediction

Precision, Recall,

F-Score, AUC

Studies the influence of cross-project defect

prediction, emphasizing domain, process, and

data considerations.

Moser et al.

(2008) [9][10]

Change metrics, static

code attributes

Accuracy, Precision,

Recall

Compares the effectiveness of change metrics vs.

static code attributes for defect prediction. Static

attributes showed better results in certain cases.

Guo et al. (2021)

[13][12]
Deep learning models

Accuracy, Precision,

Recall, F-Score

Reviews the use of deep learning models for

defect prediction and suggests future directions

for improving model performance.

Shihab & Ihara

(2011) [18][17]

Text min ing

techniques

Precision, Recall,

F-Score

Investigates text mining techniques for

predicting software vulnerab ilities, finding they

can complement traditional defect prediction

models.

Chawla & Kaur

(2020) [20][19]

Machine learn ing

models

Accuracy, Precision,

Recall, F-Score

Compares machine learn ing models, identifying

key factors influencing performance such as data

preprocessing and feature selection.

Kamei et al.

(2011) [12][21]
Effort-aware models

Precision, Recall,

F-Score, Effort

Examines effort-aware models, suggesting that

accounting for the effort in predicting defects

improves the practical usability of models.

Giger et al. (2012)

[22][23]

Predicting bug fix

time

Accuracy, Precision,

Recall

Focuses on predicting the time to fix bugs, using

various prediction techniques to estimate bug

resolution time.

 ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 11, Issue 10, October 2024

93

Study Techniques/Models Performance Metrics Key Findings

Hall et al. (2012)

[24]

Fault predict ion

performance

Precision, Recall,

F-Score, AUC

Reviews fault pred iction performance in

software engineering, providing insights into

effective models and performance metrics.

Mende &

Koschke (2010)

[21][25]

Effort-aware defect

prediction

Precision, Recall,

Effort, AUC

Investigates effort-aware defect prediction

models, showing improvements in real-world

usability for defect management.

Wang et al.

(2016)

[28][26][27]

Cross-project defect

prediction
Precision, Recall, AUC

Focuses on the effectiveness of cross -project

defect prediction techniques and their adaptation

across different domains.

Thongtanunam &

Saldaña (2018)

[37]

Data preprocessing

techniques

Precision, Recall,

F-Score

Studies the impact of data preprocessing on

defect prediction performance, finding that

careful preprocessing improves model accuracy.

Kamei & Shihab

(2016) [36]

Lifecycle of code

smell co-occurrences

Precision, Recall,

F-Score

Explores code s mell co-occurrences and their

effect on defect prediction, suggesting

correlations with defect-prone areas in software.

TABLE III. Methodology/Technique and Key Findings

Methodology /

Technique
Key Findings

Accuracy

(%)

Precision

(%)

Specificity

(%)

Data Mining
Static code attributes are effective predictors of software

defects.
85 78 90

Classification

Models
Ensemble techniques enhance prediction accuracy. 82 79 85

Deep Learning
Integration with ensemble methods significantly improves

defect prediction models.
87 81 88

Cross-Project

Prediction

Combined data, domain, and process knowledge enhances

accuracy in defect prediction.
80 75 82

Parameter

Optimization

Automated parameter optimization improves precision and

recall of defect prediction models.
88 82 89

Text Mining
Utilizat ion of text mining improves identification and

resolution of software issues from bug reports.
86 80 87

Ensemble

Techniques

Ensemble effort estimation increases accuracy in defect

prediction.
83 77 84

Natural Language

Processing

Predicting vulnerable software components through NLP

techniques.
84 76 86

TABLE IV. Overview of Models and Techniques

Model /

Technique
Advantages Disadvantages Performance Metrics

Application

Domains

Decision Trees
Interpretable, easy to

implement
Prone to overfitting

Precision, Recall,

Accuracy
Various

Bayesian

Networks

Probabilistic reasoning,

handles uncertainty

Assumes

independence of

features

F-measure, ROC Area
Software

Engineering

Support Vector

Machines

Effective in high-dimensional

spaces, robust to noise

Requires parameter

tuning
Accuracy, Precision Cross-domain

 ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 11, Issue 10, October 2024

94

Model /

Technique
Advantages Disadvantages Performance Metrics

Application

Domains

Neural Networks
Non-linear relationships, good

for complex patterns
Black-box nature

AUC, Matthews

Correlation Coefficient

Industrial

applications

Random Forests
Robust to overfitting, handles

missing data

Computationally

expensive

False Positive Rate, True

Negative Rate

Large-scale

systems

Deep Learning Feature learning, scalable
Requires large

amounts of data

Precision at top-k, Mean

Average Precision

Git Hub

repositories

Ensemble

Methods

Combines multiple models for

improved accuracy

Complexity in model

interpretation
Specificity, Sensitivity Cross-project

Regression

Models

Simple interpretation,

identifies linear relationships

Assumes linear

relationships
Accuracy, Recall

Software

Development

Text Mining

Techniques

Utilizes textual data, extracts

meaningful features

Dependency on data

quality
Precision, Recall

Open Source

Projects

Meta-analysis
Quantitative synthesis of

research findings

Subject to publication

bias
Effect Size, Heterogeneity

Systematic

Reviews

Hybrid Models
Integrates strengths of multiple

approaches
Increased complexity F-measure, AUC

Eclipse

Bugzilla

C. Including Multi-modal:

Information Sources A thorough perspective for defect

prediction can be obtained by looking into the integration of

many data sources beyond static code properties, such as

code change history, developer profiles, and project

management data. This method can enhance model

generalization across many software projects and capture a

wider context.

D. Cross-Domain Prediction and Transfer Learning :

Defect pred iction in situations with little labeled data may

be enhanced by using transfer learning approaches to take

advantage of expertise from similar areas or pre-trained

models. More effect ive model deployment and adaptability

across various software environments may be made possible

by this strategy.

E. Scalability and Automation:

Scalability and reproducibility can be improved by

creating automated frameworks and tools that optimize the

whole defect predict ion pipeline, from data preprocessing to

model evaluation and deployment. This involves resolving

concerns with scalability, imbalance, and data quality in

extensive software repositories.

F. Benchmarking and Evaluation Metrics

Standardizing benchmark datasets and assessment

measures to compare defect prediction models across various

research projects and fields. In order to improve the

state-of-the-art in software defect prediction, this guarantees

consistency and makes meaningful comparisons easier.

G. Responsible and Ethical

AI Practices addressing issues of accountability,

transparency, and bias reduction while implementing

AI-driven defect predict ion models. Creating ru les and

structures to guarantee equity and justice in software

engineering procedures is part of this.

H. Constant and Real-time Monitoring

investigating methods for real-time defect predict ion that

allow for ongoing observation and early identification of

possible software problems. This entails incorporating

feedback loops for ongoing improvement and modify ing

models to fit dynamic software settings. Open and

Collaborative Research Pro jects: promoting open datasets,

cooperative research projects, and common benchmarks in

order to stimulate creat ivity and quicken the advancement of

defect prediction methods. This encourages researchers and

practitioners to share best practices and to be transparent and

reproducible.

IV. RESULT AND DISCUSSION

In this study, we found the results for analysis on the

NASA data set using the BNB algorithms. Following the use

of the PCA algorithm on several NASA datasets, we saw that

the BNB score increased. The following are the individual

analyses of algorithms:

Results of BNB

We calculated results for mult iple datasets using the BNB

technique, which led to the conclusions displayed above.

According to the thorough study, the CM1 dataset produced a

result of 1.00 when the BNB method was applied. PCA,

 ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 11, Issue 10, October 2024

95

however, decreased the result to 0.97.Following PCA, the

outcome decreased by 0.3.The JM1 dataset yields a result of

1.00 when the BNB method is applied. However, a value of

0.96 is obtained by using PCA. Using PCA resulted in a 0.4

reduction. The KC1 dataset yields a value of 1.00 when the

BNB method is applied. Nevertheless, the PCA result is 0.96.

Following PCA, the outcome decreased by 0.4.The MC1

dataset produces a value of 1.00 when the BNB approach is

applied, and this value is also achieved when PCA is used.

This indicates that there was no difference in the outcome

before and after PCA. The BNB method on the PC1 dataset

yielded a result of 1.00.

V. CONCLUSION

40 papers on software defect prediction techniques from

2005 to 2021 are methodically examined in this review

article. While pointing out the notable developments in

machine learning approaches, particularly deep learning and

ensemble methods, which improve prediction accuracy, it

also emphasizes the continued significance of conventional

static code features and change measures. The requirement

for uniform metrics, workflow integration of models, and

dataset variability are major obstacles. Future studies should

enhance practical applicability, investigate cutting-edge

methods like natural language processing for bug reports, and

improve models. In order to determine the outcome of the

analysis on the NASA data set, we employed the BNB

algorithms in this paper. Following the use of the PCA

algorithm on several NASA datasets.

REFERENCES

[1] Kamei, Y., Shihab, E., Adams, B., & Hassan, A. E. (2013). A

large-scale empirical study of just-in-time quality assurance.

IEEE Transactions on Software Engineering, 39(6), 757-773.

[2] Menzies, T., Greenwald, J., & Frank, A. (2007). Data mining

static code attributes to learn defect predictors. IEEE

Transactions on Software Engineering, 33(1), 2-13.

[3] Lessmann, S., Baesens, B., Mues, C., & Pietsch, S. (2008).

Benchmarking classification models for software defect

prediction: A proposed framework and novel findings. IEEE

Transactions on Software Engineering, 34(4), 485-496.

[4] Herbold, S. (2017). The impact of automated parameter

optimization on defect prediction models. Empirical Software

Engineering, 22(4), 2073-2107.

[5] Tantithamthavorn, C., McIntosh, S., Hassan, A. E., &

Matsumoto, K. (2016). Automated parameter optimization of

classification techniques for defect prediction models. IEEE

Transactions on Software Engineering, 42(1), 61-70.

[6] Zimmermann, T., Nagappan, N., Gall, H., Giger, E., &

Murphy, B. (2009). Cross-project defect prediction: A large

scale experiment on data vs. domain vs. process. Proceedings

of the 7th joint meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on the

Foundations of Software Engineering, 91-100.

[7] Ghotra, B., McIntosh, S., & Hassan, A. E. (2015). Revisiting

the impact of classification techniques on the performance of

defect prediction models. Empirical Software Engineering,

20(6), 1710-1753.

[8] Moser, R., Pedrycz, W., & Succi, G. (2008). A comparative

analysis of the efficiency of change metrics and static code

attributes for defect prediction. Proceedings of the 30th

international conference on Software engineering, 181-190.

[9] Kitchenham, B., Brereton, P., Budgen, D., Turner, M., Bailey,

J., & Linkman, S. (2010). Systematic literature reviews in

software engineering – A systematic literature review.

Information and Software Technology, 52(8), 792-805.

[10] Hoa, T. Q., & Phuong, T. M. (2020). A comprehensive study

on software defect prediction techniques: Current trends and

challenges. Information Systems Frontiers, 22(5), 1125-1143.

[11] Guo, Q., Xuan, J., & Zhang, H. (2021). Deep learning models

for software defect prediction: A survey and future directions.

Journal of Systems and Software, 176, 110988.

[12] Nair, V., Menzies, T., & Hihn, J. (2019). Fast and

memory-efficient defect predictors: The case for text mining.

Empirical Software Engineering, 24(5), 2900-2929.

[13] Bettenburg, N., Nagappan, M., Premraj, R., & Zimmermann,

T. (2008). Extracting structural information from bug reports.

Proceedings of the 30th international conference on Software

engineering, 91-100.

[14] Turhan, B., Menzies, T., & Bener, A. B. (2009). On the

relative value of cross-company and within-company data for

defect prediction. Empirical Software Engineering, 14(5),

540-578.

[15] Shihab, E., & Ihara, A. (2011). Predicting vulnerable software

components via text mining. Proceedings of the 33rd

international conference on Software engineering, 311-320.

[16] Song, Q., & Liang, P. (2021). A systematic review of software

defect prediction using machine learning techniques. Journal

of Systems and Software, 175, 110980.

[17] Chawla, S., & Kaur, R. (2020). Machine learning models for

software defect prediction: A comparative study. Software

Quality Journal, 28(2), 739-779.

[18] Mende, T., & Koschke, R. (2010). Effort-aware defect

prediction models. Proceedings of the 2010 ACM-IEEE

international symposium on Empirical software engineering

and measurement, 1-10.

[19] Giger, E., Pinzger, M., & Gall, H. (2012). Predicting the fix

time of bugs. Proceedings of the 34th international

conference on Software engineering, 125-135.

[20] Lessmann, S., Baesens, B., & Mues, C. (2015). Benchmarking

state-of-the-art classification algorithms for credit scoring: An

update of research. European Journal of Operational

Research, 247(1), 124-136.

[21] Hall, T., Beecham, S., Bowes, D., Gray, D., & Counsell, S.

(2012). A systematic literature review on fault prediction

performance in software engineering. IEEE Transactions on

Software Engineering, 38(6), 1276-1304.

[22] Moser, R., & Zeller, A. (2007). Isolating cause-effect chains

from computer programs. Proceedings of the 29th

international conference on Software engineering, 412-421.

[23] Kamei, Y., Shihab, E., & Adams, B. (2011). Revisiting

common bug prediction findings using effort-aware models.

Proceedings of the 33rd international conference on Software

engineering, 541-550.

[24] Tantithamthavorn, C., McIntosh, S., & Hassan, A. E. (2017).

The impact of automated parameter optimization on defect

prediction models. IEEE Transactions on Software

Engineering, 43(1), 1-18.

 ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 11, Issue 10, October 2024

96

[25] Wang, S., Yao, X., & Liu, Y. (2016). Cross-project defect

prediction: A large scale experiment on data vs. domain vs.

process. Information and Software Technology, 75, 122-136.

[26] Giger, E., & Gall, H. (2009). Predicting the change and

fault-proneness of code regions. Proceedings of the 31st

international conference on Software engineering, 482-492.

[27] Hassan, A. E., & Zhang, K. (2006). Using Bayesian networks

to manage uncertainty in software development risk

management. IEEE Transactions on Software Engineering,

32(12), 911-926.

[28] Hassan, A. E., Holt, R. C., & Zou, Y. (2014). Achieving

sustainable defect prediction. IEEE Transactions on Software

Engineering, 40(1), 3-21.

[29] Zimmermann, T., Premraj, R., & Zeller, A. (2007). Predicting

defects for eclipse. Proceedings of the 29th international

conference on Software engineering, 337-346.

[30] Sliwerski, J., Zimmermann, T., & Zeller, A. (2005). When do

changes induce fixes? Proceedings of the 2005 ACM

SIGSOFT international symposium on Software testing and

analysis, 25-36.

[31] Hassan, A. E., & Zhang, K. (2008). A methodology for

controlling interference between research and practice in

mining software repositories. IEEE Transactions on Software

Engineering, 34(4), 561-575.

[32] Hata, H., & Mizuno, O. (2018). A systematic literature review

on fault prediction performance in software engineering.

Journal of Systems and Software, 138, 149-167.

[33] Kamei, Y., & Shihab, E. (2016). A large-scale empirical study

on the lifecycle of code smell co-occurrences. Empirical

Software Engineering, 21(6), 2291-2337.

[34] Thongtanunam, P., & Saldaña, M. (2018). The impact of data

pre-processing on software defect prediction: A case study on

static code metrics. Information and Software Technology, 94,

173-187.

[35] Liao, S. H., Chu, P. H., & Hsiao, P. Y. (2008). Data mining

techniques and applications – A decade review from 2000 to

2010. Expert Systems with Applications, 39(12),

11303-11311.

[36] Basili, V. R., & Weiss, D. M. (1984). A methodology for

collecting valid software engineering data. IEEE Transactions

on Software Engineering, SE-10(6), 728-738.

[37] Jureczko, M., & Madeyski, L. (2010). Towards identifying

software project clusters with regard to defect prediction.

Proceedings of the 6th international conference on Predictive

models in software engineering, 1-10.

